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Abstract

features.

Background: Thanks to the growth in sequence and structure databases, more than 50 million sequences are now
available in UniProt and 100,000 structures in the PDB. Rich information about protein—protein interfaces can be
obtained by a comprehensive study of protein contacts in the PDB, their sequence conservation and geometric

Results: An automated computational pipeline was developed to run our Evolutionary Protein—Protein Interface
Classifier (EPPIC) software on the entire PDB and store the results in a relational database, currently containing >
800,000 interfaces. This allows the analysis of interface data on a PDB-wide scale. Two large benchmark datasets of

biological interfaces and crystal contacts, each containing about 3000 entries, were automatically generated based on
criteria thought to be strong indicators of interface type. The BioMany set of biological interfaces includes NMR dimers
solved as crystal structures and interfaces that are preserved across diverse crystal forms, as catalogued by the Protein
Common Interface Database (ProtCID) from Xu and Dunbrack. The second dataset, XtalMany, is derived from
interfaces that would lead to infinite assemblies and are therefore crystal contacts. BioMany and XtalMany were used
to benchmark the EPPIC approach. The performance of EPPIC was also compared to classifications from the Protein
Interfaces, Surfaces, and Assemblies (PISA) program on a PDB-wide scale, finding that the two approaches give the
same call in about 88% of PDB interfaces. By comparing our safest predictions to the PDB author annotations, we
provide a lower-bound estimate of the error rate of biological unit annotations in the PDB. Additionally, we developed
a PyMOL plugin for direct download and easy visualization of EPPIC interfaces for any PDB entry. Both the datasets and

interactions.

the PyMOL plugin are available at http://www.eppic-web.org/ewui/#downloads.

Conclusions: Our computational pipeline allows us to analyze protein—protein contacts and their sequence
conservation across the entire PDB. Two new benchmark datasets are provided, which are over an order of magnitude
larger than existing manually curated ones. These tools enable the comprehensive study of several aspects of
protein—protein contacts in the PDB and represent a basis for future, even larger scale studies of protein—protein
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Background

The Protein Data Bank (PDB) [1] currently contains
more than 100,000 high-resolution structures of macro-
molecules, with protein structures representing the bulk
of the data. The PDB is a rich source of information for
studying protein—protein interactions, a central theme in
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biology; it contains hundreds of thousands of protein—
protein contacts, a significant percentage of which are
biologically relevant. At the same time, thanks to the rapid
growth of protein sequence databases, it is now possi-
ble to analyze the sequence conservation of nearly all
PDB entries. Combining sequence and structural infor-
mation, in previous work, we tackled the important prob-
lem of protein interface classification in crystal structures
[2-4]. The EPPIC method attempts to distinguish crystal
contacts from biological interfaces by a combination of
geometric criteria and increased sequence conservation at
biological interfaces. It achieves a classification accuracy
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of about 90% and was implemented in a robust and
efficient software package and server (www.eppic-web.
org) [3].

EPPIC uses three scores to classify interfaces as biolog-
ical or crystal contacts. Each residue from the interface is
labeled as core, rim or surface, depending on its buried
surface area. Six or more core residues are indicative
of biological interfaces (geometry score). The other two
scores rely on increased conservation of residues partici-
pating in the interface relative to the rest of the protein. A
multiple sequence alignment is constructed for each chain
in the query from homologs with at least 50% identity, and
the variability of each position in the alignment is gauged
by its sequence entropy. Interfaces are judged biological
if they have either a high ratio of average entropy in core
residues to rim residues (core-rim score) or highly differ-
ential conservation between the core residues and the rest
of the surface (core-surface score). The incredible growth
of sequence databases has made our conservation-based
approaches feasible: 88.1% of protein chains in the PDB
with a UniProt reference now (UniProt version 2014_05)
have enough homologs at a 50% identity cutoff for reli-
able calculation of interface conservation. A consensus of
these three scores is used for the final classification of an
interface as biological or an experimental artifact.

In the current study, we analyze interfaces across the
whole PDB. This provides better statistical robustness for
assessing methods to classify interfaces as crystal or bio-
logical contacts. At the same time, it allows mining of
protein—protein interaction data PDB-wide in order to
discover possible interesting features of interfaces. While
PISA provides a comprehensive database of interfaces
and assemblies (http://www.ebi.ac.uk/msd-srv/prot_int/
pistart.html) and Ivan ef al. [5] have reported a PDB-
wide clustering study of protein-ligand interfaces, to our

Table 1 EPPIC database statistics as of May 27,2014
Number of entries in PDB database

Number of entries in EPPIC database?

Number of protein chains in EPPIC database

Number of protein chains with UniProt match®

Number of protein chains having at least 10 homologs with 60% sequence identity

Number of protein chains having at least 10 homologs with 50% sequence identity

Number of interfaces in EPPIC database®
Number of interfaces classified as bio?

Number of interfaces classified as xtal
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knowledge, this study is the first to provide a PDB-wide,
evolution-based analysis of protein-protein interfaces.

Results and discussion

PDB-wide EPPIC precalculation interface analysis and
classification

The importance of using information from the PDB [1] to
study protein—protein interactions was highlighted more
than 15 years ago in a paper by J. Janin [6]. At the time
of publication of his paper, the PDB contained about
6,500 entries, and the SwissProt and TrEMBL databases
(later merged into the UniProt database [7]) contained
about 68,500 and 150,000 entries, respectively. Since
then, the PDB has grown about 15-fold to more than
100,000 entries (as of May 27, 2014), while the UniProt
database (version 2014_05) has reached over 52 mil-
lion entries with a 200-fold increase. Thus, the average
number of putative homologous sequences available per
PDB entry has greatly increased.

With the development of the EPPIC software and the
availability of sufficient computing power, it is possible
to predict the biological relevance of all interfaces in the
PDB. An automatic calculation pipeline was implemented
to analyze the entire PDB with EPPIC and to store the
results in a MySQL database (see Methods for details).
Table 1 gives an overview of the database of interfaces.
The pipeline, which is shown in Figure 1 as a flowchart,
greatly increased the speed, efficiency and usability of the
EPPIC web server since all user queries corresponding
to existing PDB entries return the precalculated results
instead of running the calculation. In this way, the server’s
computing power is nearly entirely available for user
queries that do not yet correspond to PDB entries. An
even more important advantage of our pipeline is the
possibility to mine the database and carry out interface

100147

99696 99.54%
129738
124592 96.03%
101113 81.16%
109761 88.10%
818358
114001 13.93%
704357 86.07%

2461 entries failed in EPPIC calculation due to non-standard crystal frames, non-standard space groups, too many clashes, etc.

bExcludes chimeric proteins, artificial sequences and highly mutated proteins.
“Defined as contacts of at least 35 A2,
dConsensus of scoring methods.
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Figure 1 Schematic representation of the PDB-wide EPPIC precalculation pipeline. Web servers are denoted by green blocks, local databases

and inputs by blue blocks, instances of the EPPIC program by brown blocks.

analysis on a scale that was previously precluded to our
method.

In addition to interface predictions, EPPIC also provides
convenient information about related sequences for each
structure. Easy access to accurate precalculated align-
ments for all structures in the PDB and to the visualization
of sequence entropy on the protein surface could be of use
for a variety of tasks and analyses that go beyond interface
classification.

In addition to the server, we developed a PyMOL
plugin that allows users to directly download precalcu-
lated EPPIC interfaces into PyMOL (Figure 2). Individual
EPPIC interfaces can be requested, or all interfaces for a
protein can be loaded simultaneously. Interfaces may be
displayed using the default line visualization or in a hybrid
mode where one chain is rendered as a cartoon and the
other as a surface displaying the sequence entropy for each
surface residue.

Beyond manually curated datasets

One of the major obstacles in developing new meth-
ods for crystal interface classification or docking is that
of the availability of gold-standard datasets for train-
ing and benchmarking where the oligomeric structure
has solid experimental backing. This problem has been
solved in the past by manual curation. While invaluable as
tools for method development and benchmarking, man-
ually curated datasets suffer from several shortcomings:
they require large amounts of time to be compiled

and validated, they are prone to human errors and,
most importantly, they can reasonably cover only a
very small percentage of the available structures. The
DCbio and DCxtal sets [3], which were used to optimize
EPPIC parameters, contain 81 entries each. The Ponstingl
dataset [8], which was used in the development of other
classification methods [8,9], contains 86 biological inter-
faces and 52 crystal contacts. In contrast to those small
figures, the number of protein—protein interfaces in the

Figure 2 Example of interface display with the EPPIC Interface
Loader plugin for PyMOL. Interface 1 of entry 2trx (E.coli
thioredoxin) fetched in PyMOL with the EPPIC Interface Loader plugin
and displayed in hybrid mode (surface color-mapped by sequence
entropy for one interface partner and cartoon for the other partner).
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PDB larger than 35 A2 is on the order of 820,000 as of
May 27, 2014.

A benchmark of at least thousands of interfaces would
be desirable for the robust training and evaluation of
new methods. Rather than attempt to do this manually,
the “Many” datasets were assembled automatically based
on independent evidence for biological and crystal con-
tacts. This problem was already recognized and partly
addressed by Xu and Dunbrack [10], where they pro-
vided a dataset of biological interfaces based on their
conservation across different crystal forms.

Thus, we based our biological interface dataset
(BioMany) on the ProtCID database [10,11], additionally
supplementing it with interfaces validated by NMR. The
ProtCID method uses the presence of an interface in mul-
tiple crystal forms as an indication that it is biological. The
method assumes that crystal contacts are unlikely to be
conserved in different lattice forms, while biological inter-
faces should be strongly bound and consistently present.
The ProtCID database [11] clusters similar interfaces
based on Pfam domain architecture and structural simi-
larity. Clusters were filtered using conservative thresholds,
and then a nonredundant subset of 2,666 interfaces was
chosen for inclusion in the BioMany dataset. While most
NMR structures are monomers (see Table 2), the remain-
ing oligomers can be confidently assigned as biological
interfaces. To avoid systematic biases arising from two
different structure determination techniques, the NMR
structures were not used directly, but were mapped onto
equivalent structures from X-ray crystallography. This
resulted in 171 interfaces with six redundant entries,
which, along with the ProtCID set, made a dataset with
2,831 unique biological interfaces. Importantly, in the
BioMany dataset, we removed interfaces with areas larger
than 2,000 A2 in order to include interfaces with areas
belonging only to the difficult-to-classify range [3].

For the set of crystal contacts (XtalMany), we collected
homomeric interfaces mediated by screw axes or by pure

Table 2 NMR statistics as of May 27, 2014

Chains PDBs Percentage
1 9224 88.80%
2 1021 9.83%
3 54 0.52%
4 65 0.63%
5 9 0.09%
6 3 0.03%
7 2 0.02%
9 1 0.01%

12 7 0.07%
13 1 0.01%
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translations. The concept of interfaces leading to infinite
assemblies, used for compiling XtalMany, was first and
most elegantly described by Monod [12]. He reasoned that
in a hypothetical molecule only two kinds of homomeric
interfaces are possible: isologous ones, formed by the
same patches in both molecules, and heterologous ones,
formed by different surface patches in both molecules.
The isologous case necessarily exhibits 2-fold closed sym-
metry. However, in the heterologous case the monomers
may either form a closed ring with rotational symme-
try, or they may form a fiber or helix and will continue
assembling indefinitely. With the exception of a very small
number of fiber-like proteins, infinite assemblies are dis-
advantageous in nature and can be assumed to be crystal
contacts.

In the context of a 3-dimensional crystal, interfaces
which are produced by a pure translation or a screw axis
can only lead to non-closed assemblies, and can there-
fore be confidently assumed to be crystal contacts. This
is a fact widely acknowledged and used in the literature,
although there is no agreement in a single nomencla-
ture for it. Janin [6] uses it to plot the distribution of
crystal contacts in known protein crystals (“interfaces
having no point-group symmetry”). Krissinel [9] uses it as
a fundamental step of his assembly algorithm, any such
interfaces of “monomeric units in parallel orientations”
are discarded in the enumeration of all possible assem-
blies compatible with the crystal. Levy, in a review on
oligomeric assemblies [13], covers the symmetry topic
extensively and discusses the presence of “open symme-
tries” that can lead to malfunctioning proteins like the
case of hemoglobin in sickle cell anemia.

For the XtalMany dataset, interfaces were clustered
by sequence and filtered for extremely small interfaces
(area < 600 A2), which are very abundant and would
be trivial to classify. In addition, entries for which the
biological unit annotation in the PDB indicates a heli-
cal symmetry were also excluded from the list (only five
such structures were found). This resulted in a set of
2,913 crystal interfaces.

The interface area distribution for the Many bench-
marks, as well as the previous DC and Ponstingl bench-
marks, are shown in Figure 3. The performance of EPPIC
was evaluated on each dataset (Table 3). With the default
thresholds, EPPIC obtained a performance in line with
that described in the 2012 paper. The performance on
the Many datasets is 88% accuracy, 85% sensitivity and
90% specificity, which is comparable to that obtained
on the smaller Ponstingl dataset of 91%, 91% and 90%,
respectively.

Figure 4 provides ROC curves for the three EPPIC
indicators (geometry, core-rim, core-surface) versus the
three datasets: the core-surface indicator turns out to be
consistently the most powerful.
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Figure 3 Interface area distribution of three datasets of interfaces. The interface areas for crystal contacts (red) and biological interfaces (green)
are shown for three interface datasets: DCBio/Xtal (left), Bio/XtalMany (center) and Ponstingl (right). The numbers in parentheses refer to the counts

Table 3 EPPIC performance based on UniProt 2014_05

DataSet N(>10 homo.)
DC

Bio 81(73)

Xtal 81(73)
Ponstingl

Bio 86(75)

Xtal 52(46)

Many

Bio 2831(2508)
Xtal 2913(2368)

Method
Geometry
Core Rim
Core Surface
Final
Geometry
Core Rim
Core Surface
Final
Geometry
Core Rim
Core Surface

Final

Sensitivity
0.8025
0.8514
0.8649
0.9012
0.8721
0.8784
0.8472
0.9070
0.7549
0.8206
0.8900
0.8531

Specificity

0.7284
0.6462
0.7059
0.7160
0.9231
0.7143
0.8571
0.9038
0.9451
0.6580
0.8236
0.9046

Accuracy
0.7654
0.7554
0.7887
0.8086
0.8913
0.8333
0.8500
0.9058
0.8513
0.7582
0.8641
0.8792

MCC

0.5323
0.5111
0.5800
0.6281
0.7789
0.5863
0.6631
0.8025
0.7143
0.4839
0.7142
0.7590
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Figure 4 EPPIC per-indicator performance against three datasets of interfaces. The ROC curves below show per-indicator EPPIC performance

against the same three datasets of interfaces depicted in Figure 3.

Revisiting the Janin curve 15 years later

In his landmark paper [6], Janin used a dataset of
1,320 pairwise interfaces derived from 152 crystal forms
of monomeric proteins to draw a curve (exponential
function) relating the interface area of a lattice contact
to the probability of it being a crystal contact. For this
fit, Janin used only data points corresponding to con-
tacts with no point group symmetry, which are thus very
unlikely to be biologically relevant, as discussed in the pre-
vious section (interfaces conducive to infinite assemblies).
We set out to compare the Janin curve with our approach,
using data from the now 15-fold larger PDB. The result
is shown in Figure 5, where the Janin curve appears in
light green and the distribution of all interfaces from the
current PDB that are conducive to infinite assemblies,
encompassing 56,378 interfaces, appears in brown. The
two curves overlap very well, testifying to the validity of
the original Janin approach and showing that the area dis-
tribution of contacts conducive to infinite assemblies has
not changed, in spite of the huge increase in the size of the
PDB.

PDB-wide comparison of EPPIC and PISA interface
classification

PISA [9] is a well-established method that estimates
the thermodynamic stability of an interface to predict

0.006 -

0.004 -

Probability

0.002 -

0.000 -

T
500

T T

1000 1500
02

Interface area (A )

== Infinite assemblies Janin

T T
2000 2500

Figure 5 The Janin curve (1997) revisited. The Janin curve is plotted
against EPPIC calls (based on evolutionary indicators, cyan, and on

geometry, green) for all current (May 2014) PDB interfaces larger than
600 A? and against all PDB interfaces conducive to infinite assemblies.
The curves are plotted as normalized probability versus interface area.
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whether it should exist in solution (biological interface) or
only in the crystalline state (crystal contact). Since PISA
makes no use of sequence information, it is completely
complementary to our EPPIC method. We carried out a
PDB-wide comparison of interface classification by PISA
and EPPIC. To obtain the PISA classification for a given
interface (biological or crystal), we use the assembly list
from the CCP4 [14] command-line PISA application. In
a given PISA assembly list, interfaces participating in the
assembly are marked as biological and the rest as crystal
contacts. There are a few cases in which the interface is
classified as “no prediction”; for instance, when PISA gives
a “gray” prediction. Out of all the interfaces in the PDB,
96.5% had a valid PISA prediction. Among those, approx-
imately 25% were predicted to be biologically relevant.
In comparison, EPPIC predicts 14% of contacts (114,001
of 818,358 contacts) to be biologically relevant. The fact
that PISA predicts a larger number of biological interfaces
seems to agree with the analysis of Krissinel [15], where, in

certain cases, PISA tends to predict too large an assembly
due to the binding effect of buffer molecules.

Comparing the results of PISA and EPPIC, we found
that the two approaches gave the same call for 88% of
interfaces. In Figure 6, we show how the fraction of
common calls varies as a function of interface area.
Unsurprisingly, the lowest agreement is observed in the
600-1200 A? interface area range, where classification is
particularly hard. This nicely confirms previous observa-
tions based on the analysis of small datasets only [3,16].

An estimate of the error rate in PDB author biological unit
annotations

An important issue affecting structural bioinformatics
analyses is that of errors in the PDB, recognized already in
some previous publications [11,17-19]. A very important
kind of error is that relating to the biological unit assign-
ment provided in REMARK 350, which is essential for
the correct interpretation of a protein’s structure. In many
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cases, difficulties in determining the correct solution state
composition experimentally [20] complicate these assign-
ments. Even in cases where the quaternary structure can
be determined experimentally, errors can still be intro-
duced in the annotation process [11].

We attempt an estimation of the error rate in author bio-
logical unit annotations in the PDB by comparing them
to the most robust EPPIC predictions on a per-interface
basis (as opposed to comparing full assemblies). We use
the following criteria to keep only the best predictions:
first, we consider only crystal structures solved at a resolu-
tion better than 2.5 A and with a refinement free R-factor
lower than 0.3; second, we require at least 30 sequence
homologs for the EPPIC evolutionary predictions and,
third, we require a unanimous call by the three EPPIC cri-
teria (geometry, core-rim, core-surface). Finally, we only
retain entries with a core-surface score lower than -3.3
for biological calls and higher than 0.15 for crystal contact
calls. These cutoffs ensure that the predictions are only
those with the most solid scores and are chosen in such a
way that the bio and xtal groups are balanced in number.
In the end, this results in 20,000 data points.

Figure 7 depicts an interface call comparison between
the most robust EPPIC predictions and the author anno-
tation, similar to the interface call comparison between
EPPIC and PISA shown in Figure 6. It is known that a
certain rate of error affects author biological unit annota-
tions in the PDB. According to Xu and Dunbrack, it is also

3000

2000

Count

1000+

2000 3000 4000 5000

02
Interface area (A )

0 1000

EPPIC xtal _ bio __ xtal _ bio
authors xtal bio bio xtal

— same call (93.45%) - - different call (6.55%)
Figure 7 Author annotation errors in the PDB. Author annotations
are compared to to the EPPIC predictions. The comparison is done on

a subset of 10,000 interfaces each from the extrema of the
core-surface score distribution. The top call in the color legend

corresponds to EPPIC and the bottom one to the author annotation.
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not uncommon for an author biological unit annotation
not to coincide with the biological unit description of
the structure in the corresponding publication [11]. Some
previous studies have also attempted to estimate this error
rate. In an effort in manual annotation aided by automatic
homology-based inference, Levy [19] estimates the error
rate to be 14.7%. We estimate the error rate of author
annotations at interface level to be 6.6%. Our lower figure
indicates a baseline level of the most obvious errors, as we
intentionally aimed to find the very clear errors, based on
our safest predictions.

Further interface statistics

We additionally analyzed the occurrence of monomers
versus multimers in crystal and NMR structures
(Figure 8), again using EPPIC classification. An entry was
judged as multimeric if it possessed at least one interface
classified as biological by EPPIC; otherwise, it was judged
as monomeric. According to this approach, X-ray crystal
structures are biological multimers in about 53.3% of
cases.

Since biological multimers can be mediated by non-
crystallographic symmetry or by different crystallo-
graphic operators, we analyzed the results of interface
classification as a function of operator type. The results,
depicted in Figure 9, show a difference in the occurrence
of biological contacts in the asymmetric unit (i.e. medi-
ated by non-crystallographic symmetry operators), as
compared to those via crystal operators. Among the for-
mer, more than one-third are biological contacts (37.3%),

40000

30000

20000

Number of PDBs

10000

T T
X-RAY DIFFRACTION SOLUTION NMR

Assembly Monomer Multimer

Figure 8 PDB-wide distribution of EPPIC monomer versus
multimer predictions by experimental technique. PDB entries are
considered monomeric (red) if none of their interfaces is classified by
EPPIC as bio; otherwise, they are considered multimeric (green).
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Figure 9 Interface classification as a function of operator type.
The green portions of the bars represent interfaces classified as bio,
the red ones interfaces classified as xtal. Operators are denoted as
follows, from left to right: 2S, two-fold screw axis; AU,
non-crystallographic symmetry; XT, crystal cell translation; 2, two-fold
axis; 3S, three-fold screw axis; 4S, four-fold screw axis; 3, three-fold
axis; FT, fractional translation; 6, six-fold screw axis; 4, four-fold axis; 6,
six-fold axis; —1, inversion center; -4, four-fold rotoinversion axis; GL,
glide plane.

while contacts through crystal operators were much less
likely to be biological. More specifically, 13.4% of the
contacts via a pure two-fold crystallographic axis are
classified as bio, 19.8% for pure three-folds, 25.2% for
pure four-folds and 12.6% for pure six-folds. Only 1% for
two-fold screw and three-fold screw axis operators were
predicted to be biological, and other types of operators
were negligible. The above findings provide information
that can usefully be applied in interface classification.
The higher percentage of biological contacts mediated
by non-crystallographic symmetry may be ascribed to
several factors, the most obvious of which are the intrin-
sic conformational heterogeneity of dimeric assemblies
and common practice in the choice of asymmetric unit
in PDB entries. In addition, authors may have chosen a
lower symmetry space group than allowed by the sym-
metry of diffraction data, thereby substituting crystallo-
graphic operators with non-crystallographic ones. Thus,
a dimer mediated by a crystallographic two-fold axis,
with a monomer per asymmetric unit, would become a
non-crystallographic symmetry dimer.

The role of crystallographic operators for protein crys-
tallization propensity was addressed in an interesting
study by Banatao et al. [21], analyzing monomeric and
dimeric proteins from the PDB. They compared the
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propensity of dimers and monomers, respectively, to
crystallize in space groups containing at least a pure
two-fold symmetry axis versus space groups not support-
ing that symmetry element. They found an enrichment
of dimers in the space groups supporting pure two-
folds, and they concluded that the fact that homodimers
can crystallize both in the asymmetric unit and via a
crystallographic two-fold axis provides them with extra
crystallization opportunities compared to monomeric
proteins. Banatao et al. thus advocated the use of synthetic
symmetrization for crystallizing recalcitrant monomeric
proteins.

Conclusions

We have carried out the first PDB-wide, evolution-based
classification of protein—protein contacts and introduced
new criteria to obtain crystal contact benchmark datasets
with large numbers (XtalMany). For the BioMany dataset
of biological interfaces, we employed multiple crystal
form data from the Dunbrack group plus interfaces from
structures solved both as NMR dimers and with X-ray
diffraction. In this way, we obtained much larger datasets
than those that can be reasonably assembled by man-
ual curation. We used the new datasets to benchmark
the EPPIC method and confirmed its performance on
5,744 data points. We also revisited, 15 years later, the first
approach to interface classification by Janin, who derived
a probability curve for an interface to be monomeric based
on its buried area. Our data confirm the essential validity
of that curve.

We could also provide a lower bound for the estimate
of biological unit author annotation errors in the PDB of
around 7%. In all likelihood, the actual rate of annotation
error is somewhat larger than that. This has been widely
acknowledged to be a very important issue that affects any
structural biology or bioinformatics analyses. Using com-
putational classification methods prior to other analysis,
as a pre-filter, can at least avoid these very clear cases.

Overall, according to the EPPIC classification, if one
considers all interfaces in PDB entries, 14% of those are
classified as biologically relevant. We further extended
our analysis to the relationship between interface classi-
fication and other crystallographic aspects, such as crys-
tallographic operator type. Biologically relevant contacts
exhibit a skewed distribution as a function of the type
of operator: non-crystallographic symmetry is particularly
enriched in the fraction of biological contacts it mediates.

Methods

PDB-wide EPPIC precalculation pipeline

Figure 1 depicts a flowchart of the EPPIC precomputa-
tion pipeline, which involves three major steps. First, the
UniProt and the PDB database are downloaded from their
respective servers, and a local copy of those databases
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is created. Second, a list of unique UniProt sequences is
prepared and used to perform a BLAST search [22] to
find putative homologs for each protein. Sequence search
and alignment is the most time-consuming part of the
EPPIC calculation, so it is precalculated on an offline clus-
ter, and the results are stored in the local database. The
third step is the main EPPIC calculation, which gener-
ates predictions for the interfaces of all PDB entries. This
is also computed in parallel on a cluster. Its output is
then checked for completeness and errors. If hardware or
network issues occur, failed jobs are resubmitted to the
cluster until full completeness. Finally, the output files are
transferred to the EPPIC web server, where the results are
stored in a MySQL database. Step 2 takes approximately
two days on the local cluster and step 3 requires about
five days, assuming an average use of 50 to 60 cores in the
cluster (Intel Xeon X5670 with 3 GB RAM each).

The schedule of EPPIC precomputations follows that of
the UniProt monthly releases. In addition to that, “top-
up” jobs are carried out weekly to include the new releases
and updates from the PDB (approximately 200 new entries
per week as of the end of 2013). These top-up jobs run
on the EPPIC web server every Wednesday morning at
8:00 AM CET, and the results are added to the precom-
puted database. The server is thus updated just a few
hours after the weekly PDB release.

BioMany and XtalMany datasets

The BioMany dataset is based on the March 20, 2014,
update of ProtCID. Clusters were chosen using more
stringent criteria than those used in Xu & Dunbrack [10].
Interfaces were required to appear in at least 10 differ-
ent crystal forms and to be present in at least 80% of the
crystal forms known. All entries in the selected interface
clusters were then clustered by sequence with BLAST-
Clust [22], using an identity cutoff of 80%. We added
additional interfaces to BioMany by using dimeric entries
determined by solution NMR. These include a number
of small interfaces, which are difficult to detect automat-
ically. Dimeric proteins solved using both solution NMR
and X-ray crystallography were identified. The biological
interfaces were determined from the NMR structure and
subsequently mapped to interfaces from the X-ray struc-
ture in order to avoid systematic biases arising from two
different structure determination techniques. All struc-
tures were required to have a resolution better than
2.5 A, and a lower area cutoff of 500 A2 was applied to
all interfaces. 171 biological interfaces were found using
this procedure, of which six were already present in the
selected protein clusters from ProtCID. It is worth not-
ing that the high protein concentration at which NMR
structure solution experiments are carried out is likely
to stabilize low-affinity interfaces that may exist in a
monomer—dimer equilibrium in the cell.
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For XtalMany, homomeric interfaces resulting from
screw or translational crystal operators were selected.
Interfaces were clustered with BLASTClust to 80%
sequence identity and filtered for resolution better than
2.5 A and an area of at least 600 A2. This resulted in
2,913 interfaces, comparable to the number in BioMany.

Comparison to PISA

The command-line version of PISA (version 2.0.1) avail-
able from the CCP4 package was run for every structure
in the PDB and its XML output was parsed. PISA returned
a list of one or more possible protein assemblies for each
structure. The assemblies in this list were categorized by
PISA to be stable, unstable or falling in a gray region
of complexation. All unstable assemblies were removed
from the list. If the new list contained only gray-region
assemblies, we marked all the interfaces in this entry as
“no prediction”. Otherwise, we took the largest stable
assembly from the list as the final prediction. All interfaces
participating in that assembly were tagged as biologically
relevant, and the remaining interfaces as crystal contacts.
The interfaces were mapped to EPPIC ones by match-
ing the crystallographic operators. If multiple copies of
assemblies existed due to multiple copies in the asym-
metric unit, we merged those assemblies into a single
assembly prediction mapping to EPPIC’s interface clus-
ters. If, in any case, more than one stable assembly with
the same size was predicted by PISA, we only took the first
one encountered.
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