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Abstract

Background: Phosphorylation is a central feature in many biological processes. Structural analyses
have identified the importance of charge-charge interactions, for example mediating
phosphorylation-driven allosteric change and protein binding to phosphopeptides. Here, we
examine computationally the prevalence of charge stabilisation around phosphorylated sites in the
structural database, through comparison with locations that are not phosphorylated in the same
structures.

Results: A significant fraction of phosphorylated sites appear to be electrostatically stabilised,
largely through interaction with sidechains. Some examples of stabilisation across a subunit
interface are evident from calculations with biological units. When considering the immediately
surrounding environment, in many cases favourable interactions are only apparent after
conformational change that accompanies phosphorylation. A simple calculation of potential
interactions at longer-range, applied to non-phosphorylated structures, recovers the separation
exhibited by phosphorylated structures. In a study of sites in the Phospho.ELM dataset, for which
structural annotation is provided by non-phosphorylated proteins, there is little separation of the
known phospho-acceptor sites relative to background, even using the wider interaction radius.
However, there are differences in the distributions of patch polarity for acceptor and background
sites in the Phospho.ELM dataset.

Conclusion: In this study, an easy to implement procedure is developed that could contribute to
the identification of phospho-acceptor sites associated with charge-charge interactions and
conformational change. Since the method gives information about potential anchoring interactions
subsequent to phosphorylation, it could be combined with simulations that probe conformational
change. Our analysis of the Phospho.ELM dataset also shows evidence for mediation of
phosphorylation effects through (i) conformational change associated with making a solvent
inaccessible phospho-acceptor site accessible, and (ii) modulation of protein-protein interactions.

Background are mediated by kinase and phosphatase activities [1].
The phosphoproteome is a window into key biological = There is widespread interest in mediators of phosphoryla-
processes, such as gene expression and cell growth, that  tion as therapeutic targets [2]. Studies of specific phospho-
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rylation pathways are being supplemented with
measurements from the developing field of phosphopro-
teomics [3,4], indicating that around one third of proteins
may be phosphorylated in a given cellular snapshot [5]. A
number of general databases are being developed to col-
late these data, such as Phospho.ELM (originally Phos-
phoBase) [6], the Phosphorylation Site Database [7], and
PhosphoSite [8]. Some resources are linked to certain
streams of data, such as plant phosphorylation (PlantsP
[9]) and specific phosphoproteome experiments (Phosida
[10]). Other databases, such as dbPTM [11], collect phos-
phorylations along with other post-translational modifi-
cations.

Phosphorylation site databases serve as a reference for
construction of methods aimed at sequence-based predic-
tion of phosphorylation sites. A range of machine-learn-
ing techniques have been used, including neural networks
(NetPhos [12,13]), hidden Markov models (KinasePhos
1.0 [14,15]), support vector machines (PredPhospho and
KinasePhos 2.0 [16-18]), Bayesian decision theory (PPSP
[19]), and other forms of sequence profile analysis (Scan-
site 2.0, Phosite, GPS [20-22]). Such predictors perform
particularly well when kinase specificities are taken into
account [18], or when species-dependence is included
[12]. Experimental studies of phosphorylation in yeast are
consistent with strong preferences of kinases for specific
substrates, but also indicate that predictions based on
phosphorylation site patterns can lead to substantial over-
prediction, and the conclusion that many sequences may
not be accessible and that other regions may be involved
in substrate recognition [23]. The current set of phospho-
rylation site databases and prediction servers has been
recently reviewed [24].

Whilst it is clear that amino acid sequence and kinase-spe-
cific features play key roles in many phosphorylations, a
number of studies have also looked at 3D structural
encoding of features around phosphorylation sites. Local
structure around phosphorylated and non-phosphor-
ylated sites was used, in the form of contact maps, to train
a neural network [13]. An algorithm to predict local struc-
tural segments from sequence has been used to enhance
prediction accuracy for phosphorylation sites [25]. A data-
base of 3D structures of protein phosphorylation sites has
been developed, including structural annotation of the
Phospho.ELM database (Phospho3D [26]). It has been
noticed that the amino acid sequence properties around
phosphorylation sites are similar to those of intrinsically
disordered protein regions, and this information used to
construct a prediction algorithm, DISPHOS [27]. Further
work has demonstrated that intrinsic disorder is a charac-
teristic of partners that bind 14-3-3 proteins [28], and that
it may be a general feature of linear motifs that determine
protein-protein interactions [29]. A survey of proteins for
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which structures are known in the phosphorylated and
non-phosphorylated forms found that the effect of phos-
phorylation is mediated in many of these cases by confor-
mational change, and by alteration of interfacial
properties in some others [30].

Charge interactions have been investigated around sub-
sets of phosphorylation sites, in phosphopeptide binding
systems [31], at interfaces mediated by phosphorylated
sites in general [32], and around activation loops contain-
ing phosphorylation sites [33,34]. In all of these cases,
favourable charge-charge interactions were identified at
the phosphorylated sites. For the phosphopeptide bind-
ing systems this is the major feature in a prediction tool
[31], whilst complementary charge interactions drive the
successful modelling of changes in activation loop confor-
mation [34].

Model peptide studies have shown that phosphorylation
stabilises a-helix formation when located at the amino
terminus [35], consistent with calculations and the loca-
tion of phosphate or sulphate ions in crystal structures
[36]. Other work has highlighted the strength of non-cov-
alent interactions that can be mediated by phosphor-
ylated groups, salt-bridging in a model peptide [37], or
mediating protein-protein interactions [38]. Calculations
have been used to estimate the relative strengths of hydro-
gen bonds that involve phosphorylated amino acid
sidechains [39]. We have previously used Finite Difference
Poisson-Boltzmann (FDPB) calculations of charge inter-
actions in studies of peptide phosphorylation [35]. The
current study uses phosphorylated proteins in the struc-
tural database to address the question of whether phos-
phorylation sites can be distinguished in terms of charge
interactions, relative to their non-phosphorylated coun-
terparts within the same proteins. We find a subset of sta-
bilised phosphorylated sites, many of which are within
kinases, and for which the favourable interaction is
derived largely from interactions with basic sidechains.
When studied in the context protein structures that are not
phosphorylated at these sites, an indication of favourable
interactions (and conformational change) can be recov-
ered by analysing the charge environment beyond the
nearest neighbours. In an extension to phosphorylation
sites from the Phospho.ELM database [6] that can be
structurally annotated, we find that these do not have as
large a signal indicative of conformational change as
those from the structural database. On the other hand, the
Phospho.ELM sites are more buried on average than the
set derived from phosphorylated protein structures. There
is also an interesting difference in the distributions of
patch polarity around Phospho.ELM sites and back-
ground sites.
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Results and discussion

Phosphorylated proteins in the structural database

Figure 1 shows the scheme for extracting proteins phos-
phorylated on Serine (Sep), Threonine (Tpo) or Tyrosine
(Ptr) sidechains, from the Protein Data Bank (PDB [40]).
Phosphorylated sets were made by reduction according to
sequence identity at 100%, 90% and 25% levels, using the
PISCES server [41]. In order to compare phosphorylated
and non-phosphorylated sites, without model-building
torsional angles for phosphate groups on the non-phos-
phorylated sites, phosphate groups were removed from
the phosphorylated sites. Calculations of charge interac-
tions were then made between a notional -2e charge on
the OG, OG1 and OH atoms (Ser, Thr and Tyr), and the
surrounding environment. Interactions were therefore
equivalent in terms of acceptor site geometry for phos-
phorylated and non-phosphorylated sidechains.

Figure 2 shows results for the 100% and 25% sequence
identity-culled sets. Separation between the distributions
is evident for both sets. Figure 3 shows, for the non-redun-
dant set at 25% sequence identity, the relative importance
of interactions from surrounding mainchain and

RCSB proteins containing
SEP, TPO, PTR residues

{0

PISCES server 90%, 25% id:
Min L 40 aas: Res limit 3.0 A

{1

Phosphorylated

SEP TPO PTR

100% 86 20 112
90% 40 25 47
25% 29 14 13

1l

Calculate charge interactions
with protein for each real and
control phospho-site (2 at site)

Non-Phosphorylated
SEP TPO PTR
4381 3918 2972
1757 1425 996
912 800 500

Figure |

Scheme for collecting proteins from the PDB, that
are phosphorylated on serine, threonine or tyrosine
sidechains, using phosphorylated residue identifiers,
Sep, Tpo or Ptr, respectively.
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Figure 2

Charge interactions of (Ser, Thr, Tyr) phospho-
acceptor sites. Distributions are compared for sites that
are phosphorylated in the PDB (phos) and those that are not
phosphorylated (non-phos) in the same coordinate files. In
these, and succeeding phos/non-phos plots, probability (p)
values of the phos and non-phos distributions arising from
the same underlying population were estimated with the
Mann-Whitney U test. (a) 100%, no removal of sequences.
(b) Sequences culled at 25% sequence identity.

sidechain components. The major determinant of stabili-
sation is (basic) sidechain interaction with phosphor-
ylated sites. These basic sidechains often, but not
exclusively, occur within the local sequence neighbour-
hood of the phosphorylated site, as is the case for sub-
strates of basophilic protein kinases. Favourable
interaction with sidechains contrasts to the relatively well-
known occurrences of sulphate ion stabilisation at an a-
helix terminus in protein crystal structures [42], and with
the role of P-loop mainchain interaction with the phos-
phates of ATP and GTP [43]. Mainchain interactions may
be underestimated relative to sidechain interactions, since
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Charge interactions for (Ser, Thr, Tyr) acceptor
sides divided according to interactions with sur-
rounding sidechain (a) or mainchain (b) groups.

our model omits specific hydrogen-bonds associated with
phosphate oxygens, concentrating on net charge.

We examined the effect of replacing single protein chains
with biological units (i.e. physiologically relevant oligom-
ers, Figure 4a). The results are similar to those for the sin-
gle chains (Figure 3), but with greater separation of the
phosphorylated and non-phosphorylated sets, indicative
of some phosphate-mediated stabilisation between pro-
tein chains. Figure 4b shows an example, where the bind-
ing of phosphorylated serotonin N-acetyltransferase and
isoform ¢ of 14-3-3, 1ib1 [44], is analagous to the phos-
phopeptide binding complexes, in which charge interac-
tions were observed to be a key feature of binding [31].
The majority of these systems were excluded through the
use of a minimum polypeptide length of 40 amino acids.
Other examples of stabilisation between protein chains
also relate to segments that would be unstructured in the
absence of phosphorylation: B-catenin repeat interactions
with both E-cadherin, 1i7w [45], and phosphorylated
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Figure 4

Charge stabilisation of phosphorylated sites in bio-
logical units. (a) Phosphorylated and background sites in
the dataset culled at 25% sequence identity. (b) Phosphoryla-
tion site stabilisation at a protein-protein interface. An
extended segment of phosphorylated serotonin N-acetyl-
transferase (AANAT) (mainchain, cyan and TPO 31, pink)
binds to 14-3-3 (orange mainchain), with surrounding resi-
dues colour-coded by type (blue basic, red acidic, yellow
polar uncharged, grey non-polar).

APC, 1v18 [46], and the forkhead-associated domain of
Ki67 with a phosphorylated fragment of human nucleolar
protein, 2aff [47].

Many of the structures studied show little stabilisation, or
show destabilisation, in our estimate of charge-charge
interactions. In a few instances, small overall interaction
results from near cancelling of stabilising and destabilis-
ing contributions, as at the phosphorylated active site of
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phosphoglucomutase, 1vkl [48], with opposing contribu-
tions from a metal ion and its ligands. In a larger number
of cases, the surrounding charge interactions are generally
small. Some of these at least may be indicative of phos-
phorylation mediating differences in the formation of
higher order structures or complexes that are not included
in the current analysis. Examples are the surface properties
and fibre formation in pilin, 2pil [49], and the phosphor-
ylation of nucleotide-binding domain 1 and potential
interactions with other components of the cystic fibrosis
transmembrane conductance regulator, 1r0z [50]. As
more structures become available for complexes, and
using comparative models built on protein-protein inter-
action templates [51], a more thorough study of the extent
to which phosphorylation mediates interfacial properties
will be possible.

For the PDB set, non-redundant at 25% sequence identity,
and using a threshold interaction of -6 kJ/mole, the cur-
rent method gives (sensitivity, specificity) of (0.48, 0.90),
compared with (0.52, 0.67) for NetPhos [13] and (0.65,
0.79) for DISPHOS [27], using the default thresholds.

Phosphorylation sites in Phospho.ELM

A scheme was employed to structurally annotate phos-
phorylated sequences contained in the Phospho.ELM
dataset (see Methods). Figure 5a shows that little separa-
tion is apparent between the phosphorylated sites and
other Ser, Thr, Tyr locations in the same set. Proteins iden-
tified in this structural annotation are generally non-phos-
phorylated. Considering possible structural adaptation to
phosphorylation, the most simple to model would be
movement of sidechains on a fixed backbone framework.
Thus, in the absence of the negative charge of a phospho-
rylated group binding to a basic patch, an alternative
acidic sidechain could occupy a similar location. In order
to test whether this simple picture would aid distinction
of phospho-acceptor sites, we calculated interactions with
positively-charged residues only. Again no separation is
apparent (not shown). In terms of (sensitivity, specifi-
city), the current method, using the -6 kJ/mole threshold,
gives (0.15, 0.92), compared with (0.66, 0.68) for Net-
Phos [13] and (0.64, 0.77) for DISPHOS [27]. These
results emphasise how poorly the present charge-based
algorithm performs for the Phospho.ELM set, in contrast
to the PDB set, leading us to consider other features that
could mediate the effects of phosphorylation.

Solvent accessibility of phosphorylation sites could be an
important factor, although conformational change will
again play a role. Figure 5b shows that phosphorylated
sites in the PDB set that is non-redundant at 25%
sequence identity, are on average more accessible than the
control set. Interestingly, phosphorylated sites from the
structurally annotated Phospho.ELM set appear to be
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Calculations with structurally annotated phosphor-
ylation sites from the Phospho.ELM dataset. (a) Summed
charge interactions. (b) Solvent accessibility for phospho-
acceptor atoms in the 25% sequence identity culled PDB set,
in the Phospho.ELM set, and in a control set (other Ser, Thr,
Tyr in the 25% PDB set).

more buried, on average, than do those from the 25%
PDB set. Both sets of calculations displayed in Figure 5b
were made with single protein chains, rather than biolog-
ical units, and should therefore be comparable.

We examined some of the most buried sites in the struc-
turally annotated Phospho.ELM dataset. In order to probe
the burial in more detail, a burial depth was calculated
from exterior solvent (see the Methods section), for the
least solvent accessible sites (0 — 5 A2 ASA, Figure 6). This
is a grid-based method, with a 2 A burial simply due to
van der Waals radius, and about +/- 0.5 A due to the grid
spacing. We find that many sites lie at a burial depth of
around 2 A, effectively at the exterior surface. Even at
larger burial depth, we find sites with some solvent acces-
sibility, i.e. solvent pockets within a protein. Of particular
interest are the sites that are most buried, according to our
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Burial depth (from exterior solvent surface) of Phospho.ELM sites that have low solvent accessibility. Scatter
plot of burial depth (see text) against accessibility for all sites with ASA <5 A2, with a surface depiction of the environment

around a buried tyrosine phospho-acceptor site in PDB file lunl.

algorithm, with least accessibility. Amongst such sites, at
zero calculated solvent accessibility, we see known exam-
ples of phosphorylation control of function, e.g. Y15 in
cyclin-dependent kinase, 1unl, shown in Figure 6, [52];
Y19 in the adipocyte lipid-binding protein, 1a18, [53];
and S579 in human plasmin, 1bml, [54]. In each of these
cases the structure from our annotation procedure is
inconsistent with phosphorylation (zero solvent accessi-
bility and substantial burial), indicative of conforma-
tional change. Although the effects of phosphorylation in
these Phospho.ELM entries are generally well-character-
ised, this work demonstrates the possibility for prediction
of conformational change in less well-studied examples,
such as those emerging from mass spectrometry data.

Phosphorylated and non-phosphorylated structures
Figure 7 presents a comparison of sites from the PDB set,
for which resolved structures exist in both phosphorylated
and non-phosphorylated states. It is evident that whilst
there is separation of the phosphorylated sites (from other
Ser, Thr, Tyr), this is not the case for the equivalent non-
phosphorylated sites. Thus conformational change
between ordered segments leads to charge stabilisation in
these systems. This result is consistent with our study of
the Phospho.ELM dataset, where known phospho-accep-
tor sites do not exhibit charge stabilisation when studied
in the context of non-phosphorylated structures.

Potential peaks around phospho-acceptor sites

Since mainchain conformational change plays a role in
some phosphorylations, we adapted previous work that
studied electrostatic potential values on a solvent accessi-
ble shell [55]. In this case we are looking for the most
favourable interacting site (highest positive potential)
within a given radius of each site (centred on Ser OG, Thr
OG1 or Tyr OH). Figure 8 shows this analysis for the non-
phosphorylated coordinate sets of the previous section, at
three radii. At 30 A radius, the interaction values are gen-
erally favourable and there is little separation between the
real and background sets, since the large search radius
links all Ser, Thr, Tyr sites to favourable patches for charge
interaction. Of more interest are the smaller radii. Some
separation is apparent at 5 A radius, which increases at 10
A radius, and is largely associated with the proteins
(including kinases) that underpin separation in earlier
Figures (e.g. Figure 7a). The procedure of electrostatic
peak finding within a sphere around a phospho-acceptor
site, but for non-phosphorylated molecules, largely recov-
ers the result of calculations with phosphorylated coordi-
nate sets. This occurs without knowledge of the loops that
undergo conformational change. The method could
therefore aid identification of such regions, and allied
with simulation methods [34], provide structural models
for conformational change that is coupled to phosphor-
ylation.

The same, patch-based, calculation was made for the 101
members of the Phospho.ELM set that could be structur-
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Comparison of structure-based calculations for pro-
teins with phosphorylated and non-phosphorylated
structures. (a) Charge interactions of the phos and non-
phos sites in coordinate files that are phosphorylated. (b)
The equivalent sites to panel (a), in coordinate files that are
not phosphorylated.

ally annotated (Figure 9). Separation of the Ser, Thr, Tyr
phos from non-phos sets is small at both the radii shown.

The patch search method appears able to identify some
regions that are susceptible to phosphorylation/charge-
driven conformational change, and will be studied in
more detail in future work, both with conformationally
characterised systems and with high-throughput pro-
teomics data. However, there also many proteins for
which charge-charge effects are not clearly apparent in
transducing phosphorylation activity, particularly in the
Phospho.ELM set. In some cases, it is possible that low
solvent accessibility is important (Figure 5b), and in oth-
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Figure 8

Searching for favourable interactions around phos-
pho-acceptor sites in proteins that are not phosphor-
ylated. Calculations were made with the non-
phosphorylated set of proteins, from the phosphorylated/
non-phosphorylated structure pairs, many of which undergo
conformational change upon phosphorylation. A search was
made, within a given radius, for the most positive potential
peak around each site (real/phos or background/non-phos).
Interaction energy is given for a single unit negative charge in
the positive potential field. (a) Radius = 5 A. (b) Radius = 10
A. (c) Radius = 30 A.
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Favourable interactions around Phospho.ELM sites
compared with background sites. Structural annotation
was made with non-phosphorylated coordinate files. (a) Max-
imal charge interactions around structurally annotated Ser,
Thr and Tyr sites at 5 A radius. (b) Maximal interactions
around Ser, Thr, Tyr sites at 10 A radius.

ers complexation may play a role. In a preliminary analy-
sis of this last factor, we calculated the non-polar
percentage of ASA in patches around phos and non-phos
sites for the structurally annotated Phospho.ELM dataset
(Figure 10). The distributions are different, with a bimo-
dal shape for the phos sites and more unimodal for the
non-phos subset. It is not clear at this stage what under-
pins this difference, but one possibility is that the effects
of phosphorylation for many of these proteins could be
mediated via interfacial regions in protein-protein interac-
tions.

Conclusion
We have studied the charge environments around phos-
pho-acceptor sites in phosphorylated and non-phosphor-
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ylated protein structures, and extended the study to
structurally annotated sites in Phospho.ELM. Our results
show that only a subset of phosphorylated structures
(around a third in our analysis of the PDB) appear to be
making use of particularly favourable charge interactions
at the site of phosphorylation, when considered in the
context of biological unit. Several of these examples are
protein kinases with phosphorylated activation loops.
When non-phosphorylated structures are studied, much
of the signal of excess favourable charge interactions rela-
tive to a control set is lost, consistent with a degree of con-
formational change (e.g. the activation loop of protein
kinases). We introduce a simple algorithm, using the
charge/electrostatic potential neighbourhood, to recover
the signal for non-phosphorylated structures. This
method has the potential to aid studies of conformational
change associated with phosphorylation, since it predicts
the target area for phosphate binding. The result is consist-
ent with molecular simulations in which charge interac-
tion was seen to be the key factor in establishing an
anchor point for phosphorylated residues [34].

For a set of phosphorylated sites structurally annotated
from Phospho.ELM, we find little signal for charge stabi-
lisation around phospho-acceptor sites, even when the
neighbourhood algorithm is applied. This result suggests
that any phosphorylation-induced conformational
change is relatively complex or that the effects of phos-
phorylation are mediated in other ways, for many of the
Phospho.ELM proteins. We find indirect evidence in both
of these directions. The Phospho.ELM set has a tendency
towards buried sites (in non-phosphorylated forms), pos-
sibly indicative of substantial conformational change. A
preliminary analysis of patch surface polarity in the Phos-
pho.ELM set shows a different distribution for phos sites
relative to non-phos sites, suggesting that complexation
could play a role i.e. where phosphorylation alters the
propensity for forming an interface.

Further work will study phosphorylation sites in the con-
text of protein-protein interaction databases (e.g. PIBASE,
[56]). There are also issues of detailed modelling, such as
inclusion of phosphate group torsion angles, emphasising
phosphate interactions with mainchain groups, and add-
ing Asp and His sidechains as acceptors. Our longer term
aims are to probe molecular mechanisms by which phos-
phorylation mediates biological effects, and improve pre-
dictive algorithms that are based on sequence properties,
using for example kinase specificity or disorder [12,27].
The issue of disorder is of particular interest since our
structural annotation of Phospho.ELM loses many phos-
phorylated sites as unstructured regions within known
folds. It will be of interest to extend our patch algorithm
to such examples, given that we also find examples in the
structural database where sites that are ordered when
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Figure 10

Polarity of patches around phos and non-phos sites in the structurally annotated Phospho.ELM dataset. Distribu-
tions are plotted for surface patches consisting of residues of ASA > 5 A2, within 10 A of a central Ser, Thr, Tyr.

phosphorylated, are unstructured when non-phosphor-
ylated.

Methods

PDB datasets

Structures containing as ligand type Sep, Tpo or Ptr repre-
senting phosphoserine, phosphothreonine and phospho-
tyrosine respectively, were identified in the PDB [40].
Single chains were selected to remove redundant copies of
phosphorylated sites within a coordinate file. Redun-
dancy between PDB sets was investigated using the PIS-
CES server [41], selecting crystal structures with a
minimum polypeptide length of 40 amino acids, and res-
olution better than 3.0 A. We carried through sets of phos-
phorylation sites at 100%, 90% and 25% non-
redundancy, based on sequence identity. These sets repre-
sent the complete phosphorylation data (100%), removal
of near-identical copies (90%), and removal of copies that
are clearly homologous (25%). This scheme is shown in
Figure 1, with the numbers of phosphorylated sites
retrieved. In addition to the phosphorylated sites, other
Ser, Thr and Tyr residues in the same proteins constituted
a non-phosphorylated control set, which was submitted
to the same calculations. Generally for any set of PDB files
containing phosphorylated sites, the control set was
derived from that set of proteins, although it is possible
that some of these other sites could be phosphorylated
under different conditions. For calculations with biologi-
cal units, the relevant coordinate files were obtained from
the PDB.

An additional dataset was formed by searching for non-
phosphorylated structures that are related PDB entries to
the phosphorylated structures, with the caveat that the site
of phosphorylation should be ordered in both cases. This

dataset was derived from the 90% sequence identity
culled set of phosphorylated coordinate files.

Phospho.ELM dataset

Phosphorylation sites from the Phospho.ELM database
were also studied, using version 5.0, released May 2006
[6]. The approximately 7000 instances of phosphorylated
serine, threonine and tyrosine were reduced to just 118
PDB files, with our structural annotation procedure.

Structural annotation of sequences

The UNIPROT protein sequence database was used to
underpin the structural annotation process [57]. Phos-
phoprotein accession numbers from Phospho.ELM were
matched to UNIPROT, and then to 3D structures where
available. Phosphopeptide sequences extracted from
Phospho.ELM were matched to the amino acid sequence
present in the coordinate section of the PDB file for verifi-
cation. Where a phosphopeptide sequence matches to
more than one PDB file, the first match was used.

Charge calculations

Charge interactions are compared at phosphorylated and
non-phosphorylated Ser, Thr, Tyr sites. This is achieved in
a model where a notional -2e charge is placed on the OG
atom of Ser, OG1 of Thr and OH of Tyr. For this purpose,
the phosphate group is removed from any phosphor-
ylated residue, allowing direct comparison with non-
phosphorylated residues. There are number of approxi-
mations in this process, notably the lack of phosphate
group modelling and the -2e charge. The pKas of phos-
phorylated sidechains for the -1e to -2e transition suggest
that the -2e state will predominate at neutral pH [35].
Nevertheless, our focus is on comparison of phosphor-
ylated and non-phosphorylated residues, rather than
absolute values. The same rationale underlies the omis-
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sion of a phosphate group model. To maintain direct
comparisons, without removing phosphates, these groups
would need to be modelled on non-phosphorylated resi-
dues, and results averaged over (or selected from) tor-
sional variation.

The Debye-Hiickel (DH) model for charge-charge interac-
tions is used, with a relative dielectric (78.4) correspond-
ing to water, and an ionic strength of 0.15 Molar. This
model does not account for charge interactions with the
less polarisable protein, but it generally works well for
charge-charge interactions at a protein surface [58], which
are the current target. We compared the DH model with
Finite Difference Poisson-Boltzmann calculations of
charge-charge interactions. The relative distributions of
charge interaction energies for phosphorylated and non-
phosporylated sites were similar to those for the DH
model (not shown).

Distributions are displayed as histograms of interaction
energy, summed over all phosphorylated (phos) or non-
phosphorylated (non-phos) residues in the coordinate
files of a dataset. Percentages are plotted, facilitating com-
parison of the unequal-sized datasets. The Mann-Whitney
U test is applied to the series of interaction values for each
phos and non-phos set. The probability of occurrence of
these series, if there is no difference in the underlying dis-
tributions, is given for each phos/non-phos plot. A signif-
icant difference is generally inferred at the 5% (p < 0.05)
level.

Solvent accessibility and burial depth

Solvent accessibility was calculated for phospho-acceptor
atoms, OG (Ser), OG1 (Thr), OH (Tyr), using an in-house
program, and the data were binned for histogram display.
Burial depth from the exterior solvent surface was calcu-
lated with a grid-based algorithm. Molecule points are
assigned on the grid for regions that are not solvent acces-
sible. Then starting from outside of the molecule, a grid of
accessibility to the exterior solvent is constructed. The bur-
ial distance (to the exterior surface) is calculated between
each atom and the nearest exterior accessible grid point. A
value of around 2 A represents exterior surface located,
taking into account the united atom van der Waals radius
set.

Polarity of surface patches in the Phospho.ELM dataset
The surface polarity around Ser, Thr and Tyr residues was
calculated for amino acids within a 10 A radius (based on
C, atoms), and with ASA > 5 A2, Distributions of non-
polar percentage (i.e. 100 x non-polar area/total area)
were compared between phos and non-phos sites.
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