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Abstract
Background: TEL is a transcriptional repressor containing a SAM domain that forms a helical
polymer. In a number of hematologic malignancies, chromosomal translocations lead to aberrant
fusions of TEL-SAM to a variety of other proteins, including many tyrosine kinases. TEL-SAM
polymerization results in constitutive activation of the tyrosine kinase domains to which it becomes
fused, leading to cell transformation. Thus, inhibitors of TEL-SAM self-association could abrogate
transformation in these cells. In previous work, we determined the structure of a mutant TEL-SAM
polymer bearing a Val to Glu substitution in center of the subunit interface. It remained unclear
how much the mutation affected the architecture of the polymer, however.

Results: Here we determine the structure of the native polymer interface. To accomplish this goal,
we introduced mutations that block polymer extension, producing a heterodimer with a wild-type
interface. We find that the structure of the wild-type polymer interface is quite similar to the
mutant structure determined previously. With the structure of the native interface, it is possible
to evaluate the potential for developing therapeutic inhibitors of the interaction. We find that the
interacting surfaces of the protein are relatively flat, containing no obvious pockets for the design
of small molecule inhibitors.

Conclusion: Our results confirm the architecture of the TEL-SAM polymer proposed previously
based on a mutant structure. The fact that the interface contains no obvious potential binding
pockets suggests that it may be difficult to find small molecule inhibitors to treat malignancies in
this way.

Background
The proto-oncogene TEL (Translocation, Ets, Leukemia) is
a transcriptional repressor that contains a C-terminal Ets
family DNA binding domain; a central domain that to-
gether with co-repressors recruit histone deacetylases [1–
3]; and an N-terminal SAM (sterile, alpha, motif) domain

[4–6], which we have recently shown forms a polymer [7].
Chromosomal translocations in a variety of leukemias re-
sult in fusion of the SAM domain of TEL to tyrosine kinase
domains such as ABL, PDGFβ and JAK2 [8–14] or to the
transcriptional activators AML1 and ARNT [15–17]. In the
tyrosine kinase fusions, SAM domain polymerization
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leads to constitutive activation of the tyrosine kinase do-
mains, which leads in turn to cell transformation
[10,12,18,19]. Thus, compounds that block TEL-SAM po-
lymerization could be effective in treating these leukemi-
as. To assess the feasibility of this approach it would be
useful to have a structure of the polymer.

The wild-type TEL-SAM polymer forms large insoluble ag-
gregates, which precludes structure determination. We
were, however, able to obtain a structure of a mutant TEL-
SAM polymer, V80E [7]. The V80E mutation is in the cent-
er of the polymer interface and reduces the affinity of sub-
unit association enough that the protein is relatively
soluble above pH 7.0, where the Glu side chain is depro-
tonated. Sufficient affinity remains, however, that upon
crystallization, the polymer reforms in the crystal. The
structure of the V80E mutant TEL-SAM revealed a helical
head-to-tail polymer in which the interface is made from
two different surfaces on the protein. One binding sur-
face, the mid-loop (ML) surface, consists of residues near
the middle of the protein and the second surface, the end-
helix (EH) surface, is centered around the C-terminal he-
lix. Although the V80E mutant self-associates weakly un-
der the high pH conditions used for crystallization, we
were able to show that the native interface is quite strong.
In particular, a protein with a mutation in the EH surface
(V80E) could bind with high affinity (Kd = 2 nM) to a pro-
tein with a mutation in the ML surface (A61D) to form a
heterodimer with a native interface. In addition, the wild-
type protein forms fibers, visible by electron microscopy,
that have a similar width to the V80E mutant polymer we
observed in the crystal.

While the wild-type and V80E mutant SAM domains form
fibers that are grossly similar, we cannot be certain that
the mutation does not significantly alter the interface.
Even a small change in subunit orientation could result in
substantial alteration of the structure of the polymer,
when propagated over many subunits. We have therefore
determined the structure of a heterodimer with a native
interface.

Results and Discussion
Crystal structure of the TEL-SAM dimer
We first attempted to grow crystals of the V80E/A61D het-
erodimer characterized previously [7], but only obtained
crystals of low quality. We therefore attempted to crystal-
lize other variants and were able to obtain high quality
crystals of a V80R/A61D heterodimer. The protein com-
plex crystallized in space group P1 with cell dimensions
a= 52.8 b= 60.3 c= 62.3 α = 116.2 β = 98.9 γ= 98.7. There
were three dimers in the asymmetric unit. The structure
was solved by molecular replacement using AMORE [20]
and refined to an Rfree = 27.2 at 2.3 Å resolution. Details

of the structure determination and refinement are given in
Table 1I.

The structures of the three heterodimers in the crystal are
essentially identical, with an average RMSD of 0.68 Å on
all atoms. A representative heterodimer is shown in Fig.
1A. As shown in Fig. 1B, the interface of the dimers con-
sists of an apolar core comprised of Met57, Ala61, Leu64,
and Leu65 on the ML surface and Phe45, Leu47, Val80
and Leu84 on the EH surface. The same residue positions
make up the core of the V80E mutant structure [7].

As in the V80E structure, a network of salt-bridges sur-
rounds the apolar core. The specific interactions in the
salt-bridge network are somewhat variable and differ
slightly from the V80E structure. In the structure of the na-
tive interface dimer reported here, all three dimers in the
asymmetric unit contain salt-bridges from Glu44 to
Lys60, Arg73 to Asp79, Asp69 to Arg71, Glu68 to Lys67,
and Asp69 to Lys67. Salt-bridges from Glu56 to Arg48
and Glu68 to Arg71 were found in two of the three native
interface dimers. All these salt-bridges were also observed
in at least two out of the three molecules in the asymmet-
ric unit of the V80E structure, with the exception of Glu68
to Lys67, which was surprisingly completely absent in the
V80E structure [7]. Thus, while the interfaces are grossly
similar in all the structures, the salt-bridging interactions
are malleable, shifting to accommodate slight changes in
the geometry of the subunits.

Table 1: Crystallographic data.

Space Group P1

Resolution Limits (Å) 2.30–500.0
Cell a = 52.8; b = 60.3; c = 62.3; α = 116.2; β = 

98.9; γ = 98.7
Completeness (%) 97.5 (95.6)
Rmerge (%) 8.7 (33.5)
I/σ 12.3 (2.1)
R-factor 23.0
Rfree 27.2
R.M.S. differences

Bond Length 0.0061
Bond Angle 1.14

Non- protein molecules
Water 115
Sulfates 11

Numbers in parentheses refer to the highest resolution shell (2.38 to 
2.30 Å) Rmerge = Σ | I - <I > | / Σ <I >, where I is the observed inten-
sity and <I > is the average intensity from observations of symmetry-
related reflections. Rfactor = Σ | Fobs - Fcalc | / Σ Fobs, where Fobs and 
Fcalc are the observed and calculated structure factor amplitudes, 
respectively. Rfree is calculated for a set of reflections (10%) that were 
not included in atomic refinement.
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Figure 1
Structure of the heterodimer with a native interface. A) Structure of the heterodimer. Residues in the binding interface are
shown in green. As shown schematically below the structure, each subunit bears a mutation in the surfaces needed to extend
the polymer beyond a dimeric unit. The sites of the mutations are highlighted in red. B) A close up view of the native interface.
Hydrophobic residues are colored green, negatively charged residues are in red and positively charged residues are in blue.
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Construction of native polymer model
Although it is not possible to obtain a high-resolution
structure of the wild-type polymer experimentally, we can
construct a model of the wild-type polymer by stringing
together repeated copies of the heterodimer structure.
This assumes that the structural relationship between sub-
units is not very flexible. The rigidity of the interface is
borne out by the fact that the structure of three dimers in
the asymmetric unit and the structure of the mutant V80E
(see below) are so similar. The procedure for constructing
a wild-type polymer model is shown schematically in fig-
ure 2A. Starting with a single subunit, additional subunits
were added by aligning a subunit of the heterodimer to

the last subunit of the existing polymer chain. The new
subunit was then added to the existing chain. This proce-
dure was used to construct three different polymers using
the three dimers in the crystal asymmetric unit. The result-
ing polymers were essentially identical with an RMSD on
polymers of nine subunits of 0.87 Å on backbone atoms.
The architecture of one of the resulting polymer structures
is shown in Fig. 2B.

The wild-type polymer is similar to its mutant counterpart
The wild-type and V80E mutant polymers are also very
similar as shown in Figure 2B. Both polymers contain
SAM subunits arranged as a left-handed helix with a 65

Figure 2
A native polymer model (A) Construction of the native polymer model. As described in the text, subunits were added by align-
ing the last prior subunit with the first subunit of a subsequent dimer. The second subunit of the dimer was then added to the
polymer chain. (C) Native and V80E mutant polymer models. Nine subunits are shown.
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screw symmetry. The repeat distance of the polymers is es-
sentially identical, differing by only one angstrom (53 Å
for mutant and 52 Å for wild-type). These results confirm
the architecture of the wild-type polymer proposed previ-
ously based on the V80E mutant structure.

SAM interface as possible drug target
SAM domain oligomerization is the key event that triggers
a variety of leukemias [21] and is therefore an attractive
target for therapeutic intervention. Compounds that in-
hibit SAM association could be effective in preventing ac-
tivation of the aberrant SAM/tyrosine kinase fusions and
consequent cell transformation. Deep pockets on a pro-
tein surface make ideal sites for the binding of small mol-
ecule inhibitors because the surface area available for
binding can be maximized [22]. Figure 3 shows the inter-
acting surfaces of the SAM domain in the polymer. There
are no obvious deep pockets for design of small molecule
inhibitors.

Conclusion
In this report we have extracted a TEL-SAM dimer from the
wild-type polymer and present its crystal structure. The
native interface was found to be similar to the previously
solved mutant interface. We also constructed a model of
the native polymer and found it to be similar to the previ-
ously proposed mutant polymer. Thus, the polymer archi-
tecture is sufficiently robust to withstand a mutation from
a hydrophobic to a charged residue in the center of the
subunit interface. We have recently determined the poly-
mer structure of the SAM domain from another protein
involved in transcriptional repression, the polycomb
group protein polyhomeotic (Ph) [Kim et al., in press].
The Ph-SAM polymer is quite similar to the TEL-SAM pol-
ymer even though the proteins have an unrelated domain
structure and show less than 20% sequence identity be-
tween the SAM domains. Moreover, different residues are
involved in the inter-subunit interactions. We therefore
speculate that the polymer architecture is conserved for an
important role in transcriptional repression, possibly in-
volving in the generation of a repressed chromatin struc-
ture [7]. A rigid, well-defined polymer structure may be
important for organizing chromatin in this manner.

From the structure, we found that the interacting surfaces
of the SAM domains are devoid of the deep pockets that
are ideal for small molecule binding. Although it may still
be possible to find small molecule inhibitors, these results
are not encouraging. Perhaps a more effective strategy
would be to develop protein inhibitors, such as the mu-
tant SAM domains described here, that can bind with high
affinity and block polymerization. This strategy is current-
ly being tested.

Materials and Methods
Protein expression, mutagenesis and purification
We used the Quickchange kit (Stratagene) to generate site
directed mutants, V80R and A61D from wild-type TEL-
SAM cloned into a modified pET3c vector (Novagen) [7].
The expressed protein sequence includes an MEKTR leader
sequence, followed by residues 38–124 of the TEL protein
and then a C-terminal His tag. Recombinant V80R and
A61D mutants were expressed in E. Coli BL21 (DE3)
pLysS cells (Novagen), and purified by Ni-NTA (Qiagen)
and HiTrap SP (Pharmacia) affinity column chromatogra-
phy followed by ammonium sulfate precipitation as de-
scribed by Kim et al [7].

Crystallization, data collection and refinement
To generate the native dimer, equal amounts of each mu-
tant dimer (both at 15 mg/ml) were mixed together prior
to crystallization. Crystals were grown by the hanging
drop method in which 2 µl of the 7.5 mg/ml dimer solu-
tion in 10 mM bis tris propane (pH 8.5) and 200 mM Na-
Cl, were mixed with 2 µl of reservoir solution containing
5% PEG 4000 and 2.0 M ammonium sulfate. Hexagonal
rod-like crystals grew at room temperature over a six-week
period. Crystals were cryo-protected with the reservoir so-
lution enriched with 30% (w/v) glycerol before data col-
lection under a liquid nitrogen stream. The data was
processed with DENZO/SCALEPACK [23]. The molecular
replacement solution was found using AMORE [20] with
a previously solved TEL-SAM mutant (V80E) dimer struc-
ture as the search model. The program O [24] was used for
model building and CNS [25] was used for refinement.
Water molecules and sulfates were added to the model
near the end of refinement using difference electron den-

Figure 3
The interacting surfaces. The ML surface is shown on the left
and the EH surface is shown on the right. Residues in the
interacting surfaces are shown in green.
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sity maps. The final model has a crystallographic R-factor
(Rcryst) of 23.0% and R-free of 27.2% on 10% of the data
(Table 1). The program O was also used for subsequent
construction of the native polymer.

Coordinates
Coordinates have been deposited in the Protein Data
Bank (Accession Code 1LKY).
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