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Abstract

Background: The function of proteins is a direct consequence of their three-dimensional
structure. The structural classification of proteins describes the ways of folding patterns all proteins
could adopt. Although, the protein folds were described in many ways the functional properties of
individual folds were not studied.

Results: We have analyzed two [B-barrel folds generally adopted by small proteins to be looking
similar but have different topology. On the basis of the topology they could be divided into two
different folds named SH3-fold and OB-fold. There was no sequence homology between any of the
proteins considered. The sequence diversity and loop variability was found to be important for
various binding functions.

Conclusions: The function of Oligonucleotide/oligosaccharide-binding (OB) fold proteins was
restricted to either DNA/RNA binding or sugar binding whereas the Src homology 3 (SH3) domain
like proteins bind to a variety of ligands through loop modulations. A question was raised whether
the evolution of these two folds was through DNA shuffling.

Background zyme having a Tim-barrel fold there is a possibility that

The analysis of protein structures as a group in generat-
ing and retrieving information is useful in various ways.
The structural bioinformatics analysis of protein data
bank (PDB) [1] is useful in identifying protein folds [2,3]
and identification of unknown protein functions. The
analysis of some of the folds illustrated the packing ar-
rangement of the secondary structural elements and fea-
tures of various non-bonding interactions prevailed in
these folds. This in turn helps in identifying active site
residues of proteins of unknown functions. For example,
the TIM-barrel fold, which is the most frequently ob-
served fold has majority of members as enzymes and the
active-site residues are situated on the loops connecting
the B-strands to helices or at the C-terminal end of the
parallel B-strands of the barrel [4]. Therefore, for any en-

the active site may be present at the same position con-
sensus with other Tim-barrel fold enzymes.

In depth analysis of a particular fold towards under-
standing the functional variability with respect to the
changes in the fold was not studied much, although there
were many reports of fold classifications [2,3]. OB-fold
[5] and SH3 domain like folds (which is called as SH3-
fold hereafter) were referred interchangeably because
they look alike at the first sight. We have attempted to
analyze the functional properties of the proteins, which
fall into either OB (Fig. 1) or SH3 (Fig. 2) folds. Although
there was no overall sequence homology between the
proteins of these two classes, we found that the B-strands
have certain sequence homology at the residues which
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Figure |

The general OB-fold topology. The -strands were labeled as
Bl to B5. The loops were labeled as RT, n-src, distal and
omega. The N- and C-termini were labeled. Note the N-ter-
minal starts with strand B2 and strand Bl was between
omega helix and RT-loop. RT-loop was connecting Bl with
B5 (see the difference with SH3-fold in Fig. 2). Note the
other striking difference between the two folds, the omega
helix which was present on majority of OB-fold proteins.
This figure was made with bobscript [31] and rendered with
povray ( [http://www.povray.org/] ).

are forming the core of the barrel. We also found that
OB-fold and SH3-fold slightly differ in their topology due
to a possible shuffling of a secondary structural element.

Results and discussion

Search for SH3-fold and SH3 like folded proteins over
various fold classification servers and manual literature
search yielded a large number of protein domains. Some
of the domains exist as individual proteins and some
were part of a multi-domain protein. After superposing
the protein domains on each other and through analysis
for a common fold architecture we identified two folds,
which are common in architecture but differ in topology.
Here architecture is defined as immediate apparent sim-
ilarity in fold irrespective of connectivity and topology is
defined as the actual way the secondary structural ele-
ments are connected and come together to form a fold.
One of the folds is known as OB-fold [5] and the other is
SH3-fold. There are at least 30 proteins/domains classi-
fied as adopting these two folds [6—10] and the list is in-
creasing. Although, there are more proteins/domains,

http://www.biomedcentral.com/1472-6807/1/5

Figure 2

The topology of SH3-fold. The sequential numbering of
strands from Bl to B5 could be seen with the connecting
loops as RT, n-src, distal. The last loop which was equivalent
to omega loop was a short 3¢-helix in majority of SH3-fold
proteins. Although the connectivity of RT-loop was different
in OB-fold and SH3-fold, the physical position of RT-loop
was approximately equivalent. This figure was made as figure
I

which could be classified into one of the two folds, they
were not included due to too many deviations from a
consensus ensemble of structures.

To our surprise we observed that, while OB-fold always
binds to either oligonucleotides or oligosaccharides,
SH3-fold binds to a wide spectrum of ligands like DNA/
RNA (Ribosomal protein L2 [11], Sso7d [12] and HIV In-
tegrase DNA binding domain [13]), peptides (SH3 do-
mains [14]) and folate (dihydrofolate reductase [15]).
Although, few enzymes have SH3-folded domains as part
of the enzyme, they stabilize the catalytic domain for op-
timal function (nitrile hydratase [16]) or stabilize the in-
coming ligand (ferridoxin:thioredoxin reductase [17]).

Both OB and SH3-folds form (-barrels constituted of five
B-strands connected by RT, n-src, distal and omega (or a
3;0-helix in majority of SH3-fold proteins; the loop no-
menclature was according to SH3-fold, except omega re-
gion which was adopted from OB-fold) loops (Fig. 1,2).
When superposed by B-strands alone, the folds align very
well with an average root mean square deviation (rmsd)
less than 2.0 A for the B-strands. Although, the strands
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Figure 3
Superposition of various OB (left) and SH3-fold (right) structures showing the structural conservation of strands and variations
in the loops. The loops are labeled as in Figures | and 2. The orientation of the molecules is same as in Figure | and 2 for SH3-
fold and OB-folds.

align well the loops show high positional variability,
which was evidenced by having high rmsd (Fig. 3). Nak-
agawa et al. were the first to identify that OB-fold and
SH3-folds were different [11]. But they did not describe
the differences in detail. We observed that two of the
loops (RT and omega) connect differently amongst the B-
strands in the two folds. In SH3-fold RT-loop connects
strand B1 to B2 and the 3,,-helix connects strand B4 to
Bs (Fig. 1). In OB-fold, RT-loop connects B1 to B5 and
the omega loop connects B4 to B1 (Fig. 2). However, the
physical position of RT-loop was retained approximate-
ly. The change in the omega loop connectivity results in
loop elongation as a o-helix in many OB-folded struc-
tures. This feature is the striking difference between
SH3-fold and OB-folds.

Interestingly, none of the proteins in both the folds have
any sequence homology with other members. However,
when the B-strands alone are considered, they show
some homology. This is because the core of the proteins
is formed by the interior surface of the B-sheets, which
constitutes the B-barrel and the amino acids projecting
into the core of the barrel must be hydrophobic (Fig. 4).
This is analogous to the earlier observed B-barrel folds
[3,18]. We are surprised to note that the ligand-binding
region of the proteins under consideration (in both SH3
and OB-fold) is the same: between RT-loop and n-src

loop and the sheet (formed by strands B2, B3 and B4)
having a RNP motif [19] of the general DNA/RNA bind-
ing proteins. For example, in Sacyd which is highly ho-
mologous to Sso7d, residues Tyr 8, Lys 9 of RT-loop and
Lys 28, Met 29 of n-src loop besides residues Lys 21, Lys
22, Trp 24, Ser 31, Thr 33, Arg 43 of strands B2, B3, B4
are binding the double helix [20]. It is well known that
polyproline peptides bind to SH3 domains between the
RT-loop and n-src loops [14]. In the C-terminal domain
of Nitrile hydratase, which is SH3-folded, Arg 141 of RT-
loop is essential for maintaining proper conformation of
Cys 113, so that Cys S-gamma bind to Iron or Cobalt ions.
The n-src loop residues Trp 161, Pro 162, Pro 164, Ile 167
play an important role in ligand-binding [16]. In the case
of OB-fold sometimes the protruding omega loop also
participates in ligand binding (For example Aspartyl-
tRNA synthase [21] and Heat labile enterotoxin [10]). It
could be, therefore inferred that the B-barrel fold creates
a base for modulating loops both in length and sequence
for a variety of functional binding properties. The varia-
tions in loops are necessary for binding to various lig-
ands. It was suggested by Lodi et al[22] that SH3-fold
was suitable to graft many different binding properties.

The architecture of B-strands is similar in both SH3 and
OB-folds. However, the subtle differences in both folds
are due to changes in connectivity of B-strands. If one
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SH3-fold:
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Figure 4

Structure based sequence alignment of SH3-fold and OB-fold proteins. The alignment was generated by COMPARER [30]
server ( [http://www-cryst.bioc.cam.ac.uk/~robert/cpgs/ COMPARER/comparer.html] ). The proteins were shown with their
PDB code. Single letter code for amino acids was used. The proteins aligned for SH3-fold were Ishg: SH3 domain of chicken
brain spectrin; lihv: the DNA-binding domain of HIV-intergrase; 1d0z: myosin S| motor domain fragment; |bia: BirA-biotin
operon repressor protein; lvie: dihydrofolate reductase; 1dj7: ferridoxin-thioredoxin reductase; |psf: photosystem | protein
PsaE; Iwhi: ribosomal protein L14. The proteins aligned for OB-fold were |csp: cold shock protein; Ibov: verotoxin-I; lltt:
enterotoxin; lcuk: ruvA protein; Ifjf: ribosomal protein S17; lasy: aspartyl tRNA-synthetase; 1a0i: T7 DNA-ligase; |eyO0: sta-
phylococcal nuclease. The -strand regions were marked as 'bbbbb' and the 3 y-turn as '333". The 3 g-turn was conserved in
many of the SH3-fold proteins. Highly conserved hydrophobic regions in the strands were marked with * or # depending on
the extent of conservation, * being all hydrophobic and # being majority hydrophobic. It is significant that out of 22 residues
forming the strands, there were 15 residues have homology.
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Figure 5

The schematic representation of chain layout of SH3 and OB-folds. The [3-strands and loops are marked. Note the insertion of
strand Bl between B4 and B5 in OB-fold and consequent changes in the loop positions.

looks at the two folds as a one-dimensional chain, it is
obvious that the first strand of SH3-fold got inserted be-
tween the fourth and fifth strands in OB-fold (Fig. 5).
Since the ending of B4 and the beginning of B1 in OB-fold
are situated far away in space (Fig. 1), the linker loop
(omega loop) should be long and on many occasions it
was extended into a o-helix. Because of this extra sec-
ondary structure the OB-fold gains further stability.
Sometimes the extended omega loop acts as a binding
loop giving support to RT- and n-src loops. For example,
in Staphylococcal Nuclease, the only enzyme with an OB-
fold, the omega loop is extended and the catalytic site is
present in between the omega and RT-loops [23]. Amino
acids Asp 19, Asp 21 (n-src loop), Arg 35 (B4), Asp 40,
Glu 43 (omega loop) and Asp 83, Lys 84, Tyr 85, Arg 87
(RT-loop) participate in catalysis and binding to DNA
and a Calcium ion. In summary, this omega loop makes
the OB-fold like a molecular clamp to hold a ligand be-
tween the four loops (RT, n-src, distal and omega) while
the B-sheet formed by strands B2, B3 and B4 make the
basic template for a oligonucleotide binding.

From figure 5 it is clear that the major difference be-
tween the two folds is the insertion/deletion of a B-
strand, apart from the omega helix in OB-fold. Since the
ligand-binding region in both folds is also similar, one
could wonder whether these two folds were evolved from
a common ancestor. If so, is it a function-driven protein
evolution as argued by Fetrow and Godzik [24]? There
are both negative as well as positive indicators to support
this possibility. The fact that all the proteins considered
in this study were not grouped into the same superfamily
in the SCOP database [3] indicates that these two folds
are not homologous or remotely homologous. The very
low sequence homology and classification into different
folds in SCOP suggests that they may not be analogous
also. However, a simple concept of DNA shuffling, first
worked out by Stemmer [25] and later demonstrated by
many others, showed that new proteins and folds could

be evolved through random fragmentation and reassem-
bly [25—27]. On similar lines, SH3-fold and OB-fold
could possibly be evolved from a common ancestor or
evolved one from the other, through shuffling of small
DNA segments over a large time-scale. Although there is
no direct evidence to prove that these two folds are
evolved from each other, directed-evolution experiments
as demonstrated by Stemmer [25] may be useful to prove
or disprove this hypothesis.

Conclusions

The common fold characteristics of both OB-fold and
SH3-fold have diversified loops in sequence as well as in
length. This feature prompts us to assume that these two
folds could be used as a basic fold in designing new pro-
teins with tailored functions. The designing of a chimeric
protein with the basic fold of five strands from one pro-
tein and loops from another protein with appropriate
mutations could be a starting point to test this hypothe-
sis.

Materials and methods

The B-barrel proteins used for the analysis under SH3-
fold were SH3 domain of chicken brain spectrin (1SHG),
CcdB a topoisomearse poison from E. coli (4VUB), dihy-
drofolate reductase (1VIE), diphtheria toxin (1BYM), N-
terminal domain of eucaryotic translation initiation fac-
tor 5a (1EIF), ferridoxin thioredoxin reductase (1DJ7),
DNA-binding domain of HIV-1 integrase (1IHV), nitrile
hydratase (1AHJ), PsaE from photosystem I protein
(1PSF), ribosomal protein L14 (1WHI), C-terminal do-
main of ribosomal protein L2 (1RL2), Snrnp (1B34),
Sso7d (1BF4), tudor domain (1G5V), myosin S1 motor
domain (1DoZ) and BirA (1BIA). Under OB-fold the pro-
teins analyzed were cold shock protein (1CSP), aspartyl t-
RNA-synthetase (1ASY), heat labile enterotoxin (1LTT),
mitochondrial single-stranded DNA-binding protein
(3ULL), Rho protein (1A62), replication protein A
(1JMC), RuvA (1CUK), ribosomal protein S12, S17
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(1FJF), N-terminal domain of ribosomal protein L2
(1RL2), S1 RNA-binding domain (1SRO), staphylococcal
nuclease (1EY0o), T7 DNA ligase (1Aol), verotoxin-1
(1BOV), C-terminal domain of eukaryotic translation in-
itiation factor 5a (1EIF). The protein data bank code was
given in the parenthesis following the name of the pro-
tein used in the analysis. For super positioning of pro-
teins programs from CCP4 package [28] were used. For
graphical visualization and analysis 'O' program [29] was
used. Comparer server [30] was used for structure based
sequence alignment.
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